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In this paper we compare regional oceanographic measurements with the
- Garrett-Munk internal wave model and also correlate local acoustic measurements
with estimates of the extra attenuation. .
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Regional Dependence of Very Low-Frequency
Sound Attenuation in the Deep Sound Channel:
Correlation with Internal Wave Measurements

SOUND ATTENUATION IN THE OCEAN
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At most frequencies, measurements of the attenution of sound in the sea can
be explained by chemical absorption mechanisms. For very low frequencies,
typically below 100 Hz, the measured attenuation is consistently higher than ex-
pected from absoprtion alone.

This excess attenuation, generally attributed to diffusive scattering loss from
oceanographic inhomogeneities, ranges from 4 to 50 x 104 dB/km depending upon
the geographic location of the experiment.

Mellen, Browning, and Goodman*® have estimated the attenuation coefficient
for an idealized deep sound channel perturbed by internal waves based on the
Garrett-Munk formulation. The result, § x 10-4 dB/km, is consistent with the lower
experimental values.

The following discussion will show that improved predictions of low frequency
attenuation coefficients can be obtained using internal wave theory if regional
deviations from the ideal ocean are considered.

*Diffisuion Loss in a Stratified Sound Channel, Journal of the Acoustical Society of America, vol.
60, no. 5, November 1976.
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For long-range diffusion loss in a stratified sound channel, we consider a plane

acoustic wave propagating through random lenticular sound speed inhomogeneities

that have lar
ticular, an ex

ge-scale dimensions compared with the acoustic wavelength. In par-
ponential buoyancy frequency profile N (dashed line) and the resulting

canonical sound speed profile C are assumed. Typical values are shown. B is the
vertical scale of the sound channel. Internal wave displacements produce
inhomogeneities by perturbing the sound speed profile, as suggested on the right-
hand side.
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TRANSVERSE DIFFUSION CONSTANT AT SOUND CHANNEL AXIS
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n ;" = variance of refractive index & (%2)2
80 = initial angle of bottom-limited array
B = scale size of sound channel

n, = (scaled)buoyancy frequency’
w; = (scaled) inertial frequency

j* = internai wave mode scale number, typically = 3

Slide 3

‘ Then, for small ray angles, the vertical transverse diffusion constant and the
! attenuation coefficient are evaluated at the sound channel axis, as indicated by

subscript 1, u? is the variance of refractive index, and 6, is the initial angle for the
bottom-grazing ray.

Values of u2, B, n, and 6, have been inferred from two sets of oceanographic
data collected at mid-latitudes in the North Atlantic. Resulting attenuation coef-
ficients will be compared with the acoustically-derived coefficients.
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But first we recall that mean-square fluctuations in sound speed (u?) are related
to vertical perturbations by equation 1. Here, zeta is the rms displacement am-
plitude, and 9 zCp is the potential sound speed gradient. Variations in internal wave
amplitude with depth can be scaled according to the buoyancy profile (as in
equation 2). The potential sound speed gradient is also related to N by equation 3.
Assuming idealized exponential stratification (equation 4) then yields equation §$, a
canonical model wherein u? decays exponentially with depth.

Equation 6 is non-canonical in that exponential stratification is not assumed.
Instead, the internal waves perturb the actual sound speed profile; wave amplitude
is scaled to the existing buoyancy profile and a measured rms displacement at depth
d. One set of measurements used to evaluate equation 6 was conducted in the Azores
Fixed Acoustic Range.
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This is a composite of 46 sound speed profiles collected in the Azores Range.
Three similar data sets were collected concurrently with profiling systems onboard
other ships. Each data set shows the same spread in sound velocities, and the in-
trusion of the Mediterranean water at 900 meters.

These fluctuations in sound speed were used to calculate u? directly.
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CANONICAL MODEL VS. MEASUREMENTS (AZORES)
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Here u2 has been scaled as dB relative to 10-6. The thick solid line is the
canonical internal wave model. Above 600 meters and below 1000 meters, the
measured values agree with the canonical decay rate.

However, at the deep sound axis (1500 meters), the observed u? is at least 17
dB larger than given by the canonical equation.

To infer whether these observed values can be attributed to internal waves in
the real ocean, u? was calculated using the non-canonical model, that is, without
assuming exponential stratification. Inputs to the mode! are now examined.
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CANONICAL MODEL VS. MEASUREMENTS (AZORES)
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A comparison of the canonical profiles of buoyancy frequency and potential
sound speed gradient (thick solid lines) is made with averages obtained from STD
casts. Significant differences occur, primarily in response to the Mediterranean {
Water instrusion. y

In addition, a 17-meter rms internal wave amplitude was estimated from two
. thermistor arrays moored at 375 meters in the Azores Range. This compares with a
9-meter canonical amplitude for the same depth. Results of the non-canonical

model are now shown.
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MODEL vs MEASUREMENT  (AZORES)
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Here, the non-canonical model is the internal wave u? calculated using the
actual ocean conditions. The canonical and the experimental curves are the are the
canonical and directly-measured u? profiles shown previously. Agreement between
the non-canonical and experimental curves, particularly at the sound channel axis,
suggests that the experimental y? values result primarily from internal waves.

Furthermore, concurrent measurements in the Azores Range using towed,
moored, and dropped sensors, plus intensive sound propagation experiments were
also consistent with internal wave fluctuation statistics and with the high observed
u? levels.
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MODEL VS. MEASUREMENT (MID-ATLANTIC RIDGE)
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A similar set of sound speed profiles was collected at a second location, near
the mid-Atlantic Ridge (~540 nautical miles SW of AFAR). The resulting direct,
canonical, and non-canonical versions of u2 are shown. Again, use of the actual,
rather than the idealized sound speed profile, can account for the largs observed u?
values. The net result of these calculations is now shown.
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COMPARISON OF VERY LOW FREQUENCY ATTENUATION
COEFFICIENTS FOR
DEEP SOUND CHANNEL, MID-LATITUDES, N. ATLANTIC
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Here the theoretical attenuation coefficient resulting from internal waves has
been evaluated at the channel axis for both the Azores and the mid-Atlantic Ridge
experiment. Also shown are attenuation coefficients based on the canonical model
and on historial attenuation experiments in the North Atlantic. Slide 11 (not shown
during the presentation) summarizes various parameter values used in the analysis.
The predicted and measured coefficients agree closely when regional ocean con-
ditions are used. ’




GM 75 AZORES M-AR
Z, (m) 1 1.5 13

N, (cph) 1.1 0.4 0.8
latitude 33° 36°50° 28°18°
n, 0.37 0.13 0.27
n,Iw; 24 8 20

w? 1.2x10°8 1.5x10°7 | 6.0x 108
it 3 3 3

B (km) 1 0.8 1.2
g2 T 033 022 023

D, 1.28 x 1075 | 187 x10°6 | 393 x10-6
a, (dB/km) 50 x 10°4 1.4x10-3 1.8x 103
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fall § gvalues standardized to a mean bottom depth of 3 km tor N. Atiantic

EXPERIMENTAL Q, FOR MID-LATITUDES IN N. ATLANTIC: 1.3 x 10 -3dB/km

In conclusion, we have presented evidence that appears to link the observed
regional dependency of very-low frequency loss in the deep sound channel with an
internal wave scattering mechanism. We are currently applying this methodology to
data obtained in other areas.
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